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Abstract

The Computer and Vision Research Center conducts a broad program of'research
in computer vision, image processing, and architectures for image processing. During
the period of this report, several projects were completed including those on
positioning and tracking of objects moving in space, parallel image processing, and 3-
D representation and recognition. The results on five projects are briefly presented in
the report.

A. Reconstruction and Matching of 3-D Objects using Quadtrees/Octrees,_

B. 3-D Model Construction from Multiple views Using Range and Intensity Data.

C. Parallel algorithms are delineated for the important task of image normalization.

D. A versatile surface representation based upon the earlier volumetric description
developed at our Laboratory has been formulated.

E. Interpretation of Structure and Motion from Line Correspondences.

During the period January 1, 1985 through December 31, 1985, our group made
20 presentations, published 9 papers in refereed journals, 11 in conference proceedings,
1 technical report and I non-refereed abstract. A complete listing of these activities is
provided at the end of this report.

1q

...- _ .. .. ..- ..... ~ .. .... . ,.... ....... .. ...... ..... ,... ....-.. .... ..... .. ..-. -



A. RECONSTRUCTION AND MATCHING OF 3-D
OBJECTS USING QUADTREES/OCTREES

A.1. INTRODUCTION

The need for efficient 3-D object representations is crucial in computer vision, com-

puter graphics, computer-aided design and other related areas. Several representation

schemes have been proposed [1-41. Representations are usually determined by the data

acquisition techniques or by the type of application. For instance, a surface representation

is suitable for graphic displays of opaque objects, whereas it is easier to perform opera- r

tions such as matching and interference analysis with volumetric representations. A corn-

mon problem with most representation techniques is that requirements for memory and

processing time grow as exponential or quadratic functions of the input image size. This

calls for a compact data structure that allows efficient algorithms to be implemented on it.

The octree structure [5-11] with efficient tree traversal algorithms is such a candidate.

In general, an octree can be generated from a 3-D binary array using a recursive divi-

sion and subdivision procedure. However, the acquisition of such a volume description is

not a trivial problem. 3-D object structure can be derived from 2-D images. This task has

been the primary concern of computer vision researchers. To resolve the 3-D reconstruc-

tion problem, Chien and Aggarwal [10-11] proposed a scheme to generate octrees from

three orthogonal views of objects using a volume intersection technique [12-13]. Each

view is extended along the associated viewing direction to form a cylinder. Each cylinder

is described by a pseudo-octree. The octree of the object is generated by intersecting the

three pseudo-octrees. L

In this research, this algorithm is extended to generate the 'generalized octree' of an

object from three known non-coplanar views, which are not necessarily orthogonal to each

other. Each unit volume (voxel) associated with a node in a generalized octree is a paral-

lelepiped, with the three sides specified by the three viewing directions.
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A 'regular octree', with each voxel being a cube, is a special case of the gen-

eralized octree structure. It is known that in some cases a finite number of views is not

enough to reconstruct the exact 3-D structure of an object. The more views of an object

that are given, the more accurate is the description of the object that can be obtained. An

object description scheme should be conducive to refinement with additional information.

The proposed generalized octree structure allows subsequent refinement of the representa-

tion as additional views are available. The basic principle of the algorithm for refining

octrees is similar to that of the algorithm for intersecting pseudo-octrees.

To perform object matching, the representation of the objects should be location and

orientation invariant. The generalized octree structure does not meet these criteria, since it

is dependent on viewing directions. A common scheme to solve this problem is to project

a generalized octree onto the images planes of the three principal views (along the princi-

pal axes) to obtain the three 'principal quadtrees', and to perform matching based upon the

principal quadtrees. Computing principal axes requires the computation of the (3 x 3)

moment of inertia matrix comprising second order moments. To speed up processing,

computation of these moments are performed based upon a 'generalized coordinate sys-

tem' specified by the three viewing directions. The coordinate transformation (from the

generalized coordinate system to the Cartesian coordinate system) is applied only to the

moment of inertia matrix. The three principal axes can be obtained from the transformed

moment of inertia matrix by computing its eigenvectors. A 'coarse' matching is per-

formed by matching the principal quadtrees of the unknown object against those of a

number of models. A smaller set of models with lower degree of dissimilarities are

selected. The octrees of the observed object and models are generated and a 'fine' match-

ing is applied to octree pairs in order to identify the object. These results were presented

at the Third Workshop on Computer Vision: Representation and Control, Bellaire, Michi-

gan, October 13-16, 1985.
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B. 3-D MODEL CONSTRUCTION FROM MULTIPLE VIEWS
USING RANGE AND INTENSITY DATA

B.4 Introduction

Automatic generation of computer models of the surfaces of arbitrarily shaped, three

dimensional objects is an important problem in computer vision. In the past a number of

different techniques have been used for representation and modeling of 3-D objects for

computer vision applications [1]-[7]. However, there is an absence of a fast and robust

technique for building 3-D models of arbitrarily shaped objects. In this paper, we describe

a computationally efficient technique for automatic construction of 3-D models of objects

given multiple views of range and intensity data.

The process of constructing 3-D models of objects involves first, integrating data or

structured descriptions from multiple views of an object and then generating a representa-

tion of the complete object. In general integrating data or structured descriptions acquired 5

from multiple views involves establishing correspondence between the views and deter-

mining the appropriate interframe transformations to register the views. The difficult and

time consuming step in the above process is the matching step required to establish a

correspondence. Much of the previous research efforts have been directed towards solving

the difficult correspondence problem. S

Several matching techniques have been developed in the past for solving this

correspondence problem. Potmesil [3] generates models of 3-D objects by spatially

matching 3-D surface segments describing the objects. His matching algorithm uses

heuristic search to align overlapping surface segments of an object into a common 3-D

coordinate system. Bhanu [1] has developed an interactive technique for constructing 3-D

models of objects. The model is constructed by rotating the object through a known angle

5
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to acquire multiple views. Coordinates of points from the multiple views are then

expressed in one reference coordinate system, assuming that the interframne transformations

are known a priori. Ferri and Levine [4] discuss a technique for piecing together the 3-D

shape of moving objects. They construct the model of an object by first computing

descriptions of visible surfaces of an object from each view of a set of multiple views.

Then the interframe transformations which register these images with respect to a refer-

ence coordinate system are computed (using a feature based matching algorithm), thereby

allowing for the reconstruction of surface descriptions in a world coordinate system.

Boyter and Aggarwal [51 present a technique for recognizing 3-D objects using range and

intensity data. They construct the model of an object by rotating the object through known

.

angles and collecting the range and intensity line images for each object position. Bhanu

et al. [2] describe a 3-D model building technique that is based on CAGD (Computer

Aided Geometric Design) techniques. The 3-D data is obtained from a CAGD model of

an object and the object is represented by planar approximations. The planar approxima-

tions are merged using a spatial proximity graph, to obtain a structured collection of large

faces. Maggee et al. [6] present a technique for recognition of 3-D objects through inten-

sity guided range sensing. Models are represented by a graph structure, wherein each node

denotes a feature and arcs between nodes depict the geometric relationships. Boyter and

Aggarwal [7] present an algorithm for recognition of polyhedra from range data. The

polyhedral models are represented by 3-D coordinates of vertices, the plane equations of

each face and ordered lists of vertices that bound the faces.

Most of the methods discussed above can be classified as correspondence based

methods. These methods are computationally expensive due to the large search space that'.

needs to be explored for establishing correspondence. It may be noted that none of the

I.

methods discussed above utilize information about the imaging geometry that is readily

6



available when constructing models. In this paper we present a technique for automatic

model construction, given the range and intensity data. The technique presents a simple

way of integrating information from multiple sensors namely, range and intensity.

Another important feature of our method is that no point correspondences are required to

determine the interframe transformations needed to express the points from each view in a

common reference coordinate system.

The range and intensity data are obtained using a commercially available laser scan-

ning system [8], which works on the principle of light sheet triangulation. The object is

placed in its stable position on a flat surface called the base plane. The base plane is

encoded with a pattei~ consisting of a single straight line. The object is positioned on the

base plane such that the base plane pattern is fully or partially visible from every viewing

angle. Multiple views of the object are generated by rotating the base plane about some

arbitrarily fixed axis perpendicular to and on it. By observing the orientation of the base

plane pattern in the intensity images of adjacent views, the interframe transformation can

be easily deduced. Once the interframe transformation is known, all the (range) data are

transformed into a reference coordinate system and merged. A region description of the

object may then be obtained using the algorithm presented by Vemuri et al. [9]. In this

representation, 3-D object surfaces are represented by regions that are a collection of sur-

face patches homogeneous in certain intrinsic surface properties. An important aspect of

this representation is that it is viewpoint independent, which is crucial for object modeling

and recognition. The results were presented at the MEEE Computer Society Computer

Vision and Pattern Recognition Conference at Miami Beach, Florida, 1986.

.
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C. PARALLEL IMAGE NORMALIZATION

C. 1. Introduction

It is becoming apparent that architectures for image processing utilize two
distinct types of processing elements. These form a two-level hierarchy where
dedicated units will perform the high speed low-level operations and more flexible
general purpose machines will perform the high-level operation [1]. In particular, the
two-dimensional array structure has been shown to provide a high degree of
performance for low-level operation. Furthermore, their regular structure makes them
suitable for VLSI implementation [2],[3].

Image normalization is an important function frequently used in object
recognition tasks [4],[5]. By "normalizing" the image of an object we refer to the
process of creating a description that is invariant to the position, orientation, and size

of the object in the image.

A mesh structure with one PE per pixel matches the structure of the image
data and thus the normalization task essentially requires mapping each pixel to a new
pixel location. Then the process is reduced to routing pixel data through the mesh.

C.2. Processing Structure

A four-neighbor connected mesh architecture is assumed where there is
one PE per pixel. Each PE is capable of performing addition, multiplication, and
comparison operations. In addition, it can maintain a FIFO queue. The queue will
temporarily store routing information. The routing information or "pixel-data" for each
PE, consists of three fields, pixel value, destination address, and adjacent boundary
pixels. "'

C.3. Parallel Normalization

9
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Basically, image normalization is a mapping process of each object pixel

from its original position to its destination determined by the normalization parameters:

translation vector, rotation angle and scale factor. The inside of objects have to be

filled after the mapping when the scale factor is greater than 1 or the rotation angle is

not an integer multiple of 90 O. Before filling the inside, we have to reconnect the

disconnected boundary. That is, the overall normalization process consists of

calculation of destination, mapping, boundary reconnection, and filling.

Let g(T,e,s) be the mapping function, where T is the translation vector, 0

the rotation angle, and s the scale factor. If we use g directly when mapping, the

boundary reconnection is quite complex and time consuming. In order to overcome

this difficulty, we decompose g into three subfunctions: g1(T), g2(0), g3(s). The three

processes, translation, rotation, and scaling, are therefore performed separately with gl,

92, and g3, respectively. Then the boundary reconnection is not necessary for the first

two processes, in which the boundary is not disconnected. Moreover, the geometrical
relationship between neighbors is not changed by g3(S). In other words, the direction

in which one's neighbor will be found after the mapping is the same as that before the '
mapping. Therefore, we just have to store the information about which one(s) of 4

neighbors of a boundary pixel is boundary, for reconnection.

For each process (translation, rotation, scaling), the following procedures

are executed in all PE's in parallel.

(a) Calculation of destination address

(b) Mapping of non-background pixels

(c) Reconnection of boundary (scaling, s> 1)

(d) Filling the inside of object (rotation, scaling)

................... 1 .) -'. .



Mapping

The basic control scheme of mapping is the "store-and-forward"

mechanism. The mapping of a pixel is controlled by the repetitive application of basic a-

flow control. We distinguish between two types of controls for regulating the flow of

data between PE's. The first is the common flow control (CFC) illustrated in Figure

C.1. All PE's transfer data to the same neighbors simultaneously. The second control

mechanism is the discriminate flow control (DFC) where the array is partitioned into

disjoint sets. Each set impelments one of the forms of common flow controls. Some

examples which are used in scaling and rotation are shown in Figure C.2 and C.3. A
set of flow controls applied one at a time is called a cycle and each element of the

cycle is called a phase. In a particular phase, if a PE contains data at the head of the

queue to be transmitted in the direction specified by the phase, it transfers the data.

Boundary Reconnection a-

Local information about the direction of adjacent boundary pixels is

available in each PE which holds a boundary pixel after mapping. If an adjacent pixel
in one of those directions is not a boundary pixel, it is made a boundary pixel by

changing its pixel value and transferring the information about the adjacent boundary
pixels. This operation is repeated (due to a cycle of CFC's) until a boundary pixel is

met. The same operation is similarly initiated, if necessary, in other directions. The

disconnected boundary can be eventually reconnected.

Filling

For non-boundary and non-background pixels, any adjacent (4-

connectivity) non-boundary pixel is made an object pixel. This operation is repeated

(due to a cycle of CFC's) until the inside of the object has been filled.

C.4. Discussion

Figure C.4 contains simulation results for the image of an airplane. It can

be seen that the proposed method works well. A small quantization error along the

boundary of the normalized image is observed. We can consider some variations of

11 'S
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this method. Suppose that we do not have enough PE's and therefore have to assign a

block of the image to a PE. Then each PE processes a block of the image assigned to

it sequentially and exchanges pixel data with neighboring PE's. This method may be

extended to gray level images as follows. A gray level object is segmented into
several regions, each of which is uniform (same gray level). Each region may be

considered as a binary object and normalized using the same algorithm proposed. The

possible gaps between regions are handled by boundary reconnection and region filling

algorithms.

In translation, routing pixels toward their destinations takes N/2 cycles at -

most where N is image size (NxN). In rotation and scaling, the routing requires o(N)

cycles. Also, it takes o(N) cycles to reconnect boundary or to fill the object.

Therefore, the overall normalization needs o(N) steps compared to o(N2 ) by a

sequential method.

12
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D. CONSTRUCTION OF SURFACE REPRESENTATION

FROM 3-D VOLUMETRIC SCENE DESCRIPTION

D. 1. Introduction

This research is aimed at developing a versatile surface representation of

3-D objects from the volumetric scene description developed by Martin and Aggarwal

[1], [2]. The technique we propose builds an explicit surface representation from a

general description of a scene containing several occluding objects. The scene

description is obtained by integrating information from several 2-D images, and is

recorded as a hierarchical data structure which represents a set of planar slices of the

object; each slice is characterized by a collection of 2-D shapes which define the

structure at that cross section. A bottom-up approach to surface construction is

adopted here. This approach involves three steps: (1) Contours on pairs of consecutive

slices are examined. Contours are associated on the basis of the amount of

overlapping between regions enclosed by these contours; (2) Surface elements are fit in

between pairs of associated contours to establish local surface structure; and (3) These

surface elements are then coalesced to form larger object facets. The resulting surface

structure is recorded in a table of polygonal patches that forms the bounding surface

description of the 3-D objects in the scene. Each step will be described in more detail

in the following paragraphs. Some implementation results are also presented.

D.2. Contour Association

We first state the criteria for associating contours. Two contours will be

associated if they are on a pair of consecutive slices, of the same sign (either both

contours enclose the object regions or both contours enclose the hole regions), and the

overlapping area of the two regions enclosed by the two contours is significant

compared to that of the regions themselves. The 3-D scene structure is processed

sequentially two slices at a time. If the overlapping area is close to that of the two

regions enclosed by the two contours, both contours will be marked as processed by

assigning to them a channel number to which they belong for identification. If the

overlap is small compared to that of the larger of the two regions and large compared

15
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to that of the smaller of the two regions, the larger contour can still be associated with

other contours and hence is marked after all association relations are found. After the
associations are completed, contours left unmarked possibly belong to different objects
in the scene and are assigned new channel numbers. In this process, sequences of
associated contours are recorded by attaching a unique tag (channel number). r

Subsequent triangulation process and surface hierarchy construction are performed over

each channel independently.

D.3. Local Surface Construction

After the association relationships between contours on consecutive slices

are identified, we will then construct the bounding surface structure between pairs of
associated contours. Here we preferred planar facets to curve ones because of their
representation simplicity. Finding planar surface approximation between pairs of

associated contours can be formulated as a triangulation process. Briefly, the
triangulation process generates a collection of triangular patches between the associated ".

A'

pairs of contours such that their union forms a closed bounding surface. The vertices

of the triangles are the boundary points on a pair of associated contours. Triangulation

of boundary points can be accomplished by constructing a graph (or matrix)
representation in which the row and column indices correspond to the sequence
number of the contour points on a pair of associated boundaries. A closed surface
representation can then be formed by selecting a proper set of triangles such that the
corresponding edges form a connected path of length m+n in the graph, where m and
n are the length of the previous and current contours respectively. Our method of

finding such a path (or a triangulation) is based on the observation of correlation of

merit assignments among neighboring triangles. This observation suggests that merit
assignment should go through an iterative updating process or a 'relaxation' process to
incorporate that of the neighboring triangles to ascertain the final merit assignment.

The relaxation process serves as an early screening process which speeds
up the final structure construction by reducing the dimension of the selection through

an early pruning of the triangles with relatively low merits. However, we might be
left with many promising triangles so that more than one bounding surface structures

can be built from them. A final selection of the bounding surface representation is
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thus needed using a search over the restricted graph of possibilities. The well known*
A search algorithm is repeated for all pairs of associated contours to produce the
local bounding surface description. "

D.4. Surface Hierarchy Generation

Instead of incorporating triangular patches found directly as primitives for
representation, we establish a surface hierarchy by coalescing triangular patches with
identical orientation into polygonal facets. This is because the basic triangular patches
are numerous, they may not constitute a reasonable depiction of the 3-D objects. A
more reasonable depiction can be achieved if we establish the surface hierarchy by
coalescing the adjacent triangular patches into polygonal facets such that the
orientation of the constituent triangular patches is preserved. Data reduction is also

achieved through this process.

Surface hierarchy can be established by coalescing adjacent patches in two
directions: horizontal and vertical. Horizontal merging coalesces adjacent patches with
same orientation within the same cross section, whereas vertical merging coalesces
patches resulting from the horizontal merging across the whole scene structure. The
structure obtained from this merging is shown in Figure D.I. Each polygonal facet is

delineated through a pointer set which defines the bounding points for the facet at each
slice thus pointer set will enable us to retrieve the detailed structure of each facet for
later analysis. Information about the channel number, normal direction, and the size of
the patch is also recorded.

-
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Figure D.I. The final patch structure

5. Experimental Results

Some experimental results are shown below. Figure D-2.1, D-.3.1, and

D.4.I show the wire frame 3-D structure of a bus, an object with a hole, and scene

with multiple objects, respectively. Figure D.2.2, D.3.2, and D.42 are the surface

structure constructed for Figure D.2.1, D.3.1, and 0.4., respectively, as viewed from

different angles.

N A3



Jo

Figure D.2. (1). Wire frame 3-D structure of a bus, (2). Surface structure of the bus as viewed from
the bark (a), front (b), side (c), and top (d).%

Figure D.3. (1). Wire frame 3-D structure of object with a hole, (2). Surface structure of object with a
hole as viewed from side (a). (c), and (d), and front (b).
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E. INTERPRETATION OF STRUCTURE AND MOTION
FROM LINE CORRESPONDENCES

E.. INTRODUCTION

.

The problem we address in this research is, in its generality, that of recovering the

orientation and position of a set of lines in space from multiple views of these lines, as

well as the relative displacement between the views. Research in structure and motion

from images has concentrated on the use of points and optical flow. There is also a grow-

ing interest in the use of contours and range. The use of lines [1]-[3] has been relatively

neglected although these may often be easier to extract from images. In [1] a method has

been proposed which relies on the projective configuration of six lines in three views. In

this paper we describe a method based on the observation of four lines in three views (the

case of two views of any number of lines is inherently ambiguous). This method exploits

the principle of invariance of angular configuration with respect to rigid motion in

addition to the usual projective constraints. The method first solves for the orientation of

lines in space. The rotational component of motion between the viewing systems is then

readily recovered from these orientations. Finally, the translation components of motion

(and therefore the position of lines in space) can be recovered. The results will be

presented at the International Conference on Pattern Recognition in Paris in October 1986.

2.
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